The energy of vaporization of a liquid under pressure has its most definite meaning in terms of the equation

$$
\begin{align*}
& \Delta E_{\text {vap }}=V p_{\text {internal }}=V(\partial E / \partial V)_{T} \\
&=V\left(T(\partial p / \partial T)_{V}-p\right) \tag{7}
\end{align*}
$$

due to Hildebrand．${ }^{6}$ If this is substituted in Eq． （6）we get

$$
\begin{align*}
& \eta=1.090 \cdot 10^{-3} \frac{M^{\frac{1}{2}} T^{\frac{1}{2}}}{V^{5 / 3}(\partial p / \partial T)_{V}} \\
& \cdot \exp \left[V(\partial p / \partial T)_{V} / n R\right] . \tag{8}
\end{align*}
$$

Eqs．（6）and（8）are general equations for calculating the viscosity of a pure liquid at any temperature and pressure．Table III and Fig． 6

Table III．Computation of the viscosity of ether as a function of pressure at 52.5° ，using Eq．（8）．

кG／$/ \mathrm{Cm}^{2}$	$\stackrel{V}{\mathrm{cc} / \mathrm{MOLE}}$	$\frac{(\partial \rho / \partial T) V}{\mathrm{KG}^{(\mathrm{CM}}{ }^{2}} \begin{aligned} & \text { DEG. } \end{aligned}$	$\begin{gathered} \eta \text { (calc.). } \\ \text { MuILI. } \\ \text { Poisse } \end{gathered}$	n（ons．） $\substack{\text { MIILI } \\ \text { Poises }}$
1	109.9	6.73	1.80	1.83
1000	－	－	－	3.61
2000	90.25	13.50	5.35	5.64
3000	86.70	16.00	8.00	
4000	84.00	18.00	10.7	10.50
5000	81.80	19.80	14.0	－
6000	80.05	21.40	17.7	17.58
7000	78.50	22.85	22.0	
8000	77.15	24.20	26.3	27.75
9000	76.05	25.40	30.9	－
10000	75.05	26.50	35.8	42.69
11000	74.10	27.50	40.8	－
12000	73.25	－	－	64.24

show a test of Eq．（8）for ether at 52.5° ，using $n=4$ and dividing the calculated values by 2 as mentioned above in the test of Eq．（4）．V and $(\partial \rho / \partial T)_{V}$ were evaluated from the PVT data of Bridgman．${ }^{7}$ The observed viscosities under pressure were also taken from Bridgman．${ }^{8}$ It is seen that the equation fails above about 7000 $\mathrm{kg} / \mathrm{cm}^{2}$ ．This failure may be due to the failure of Eq．（7）or to any of several other causes which need not be discussed here，but the close agree－ ment up to $7000 \mathrm{~kg} / \mathrm{cm}^{2}$ gives striking confirma－ tion to the fundamental correctness of the theory．

Equation（6）will give approximate results for pressures below $2000 \mathrm{~kg} / \mathrm{cm}^{2}$ when the ordinary energy of vaporization measured at atmospheric pressure is used，thus requiring PV data only at
the temperature in question．This is possi； because the internal pressure and energy vaporization change very little for pressures en to about $2000 \mathrm{~kg} / \mathrm{cm}^{2}$ ．Eq．（6）can also be used． calculate the internal pressures of liquids experimental values of the viscosity under pat sure are available－just the reverse of calculation in the last paragraph．The origir paper 2 illustrates both these applications．
An obvious application of Eq．（8）is to calculation of the viscosity of lubricants und－ high pressures．The fact that the viscosity if liquids increases rapidly with pressure is，it course，of great importance in many lubricatic problems．Mineral lubricating oils are mixtures many molecular species，and since Eq．（8）is try only for pure liquids，no attempt will be makh here to calculate the absolute viscosities of 3 under pressure．However，a calculation of th relative viscosities at two different pressum seems more likely to succeed．Eq．（8）gives

$$
\begin{aligned}
& \frac{\eta_{p_{2}}}{\eta_{p_{1}}}=\frac{\left(V_{r}^{5 / 3}(\partial p / \partial T)_{V}\right)_{p_{1}}}{\left(V_{r}^{5 / 3}(\partial p / \partial T)_{V}\right)_{p_{2}}} \\
& \cdot \exp \frac{M}{n R d_{0}}\left[\left(V_{r}\left(\frac{\partial p}{\partial T}\right)_{V}\right)_{p_{2}}-\left(V_{r}\left(\frac{\partial p}{\partial T}\right)_{V}\right)\right.
\end{aligned}
$$

where $V_{r}=$ relative volume，

$$
d_{0}=\text { reference density }
$$

$$
n=4,
$$

and R must be in the appropriate energy unit．
Table IV shows the results of testing it equation．$(\partial p / \partial T)_{V}$ and V_{r} were evaluated fro the PVT data of Dow ${ }^{9}$ on a Pennsylvania and the observed viscosities were interpolate from the data of Dow ${ }^{10}$ on another Pennsyla： oil，whose molecular weight was 485 ± 10 percr The value of the molecular weight in such calculation is the most uncertain factor．T．

Table IV．Computation of the viscosity of Pennsylar oil as a function of pressure at $57.5^{\circ} \mathrm{C} . M=485 \pm$ I／ $d_{0}=0.8524$ ．

кG／${ }_{\text {¢ }}^{\text {cm }}{ }^{\text {2 }}$	V_{r}	$\begin{aligned} & \frac{(\partial p / \partial T) V}{\left(\mathrm{KG} / \mathrm{CM}^{2}\right.} \\ & \mathrm{DEG} . \end{aligned}$	$\frac{\eta_{1500}}{\eta_{375}}$（calc．）	$\begin{aligned} & \eta \text { (ors.).) } \\ & \text { Poisse } \end{aligned}$	$\frac{n_{1200}}{n_{735}}$
375	0.9875	10.81		0.77	
1500	0.9412	12.78	6.96	5.35	6.9

